Conveners
Plenary Presentations: Chair: Paolo Lenisa (Ferrara)
- Paolo Lenisa (University of Ferrara and INFN)
Plenary Presentations: Chair: Toshi-Aki Shibata (Nihon Univ.)
- toshiaki shibata (Nihon University)
Plenary Presentations: Chair: Anna Martin (Trieste)
- Anna Martin (Trieste University and INFN)
Plenary Presentations: Chair: Hans Stroeher (Julich)
- There are no conveners in this block
Plenary Presentations: Chair: Kazuhisa Kakurai (CROSS)
- Kazuhisa Kakurai (CROSS)
Plenary Presentations: Chair: Seonho Choi (Seoul National Univ.)
- Seonho CHOI (Seoul National University)
Plenary Presentations: Chair: Yulia Furletova (JLab)
- Yulia Furletova (Jefferson Lab)
Plenary Presentations: Chair: Hideto Enyo (RIKEN)
- Hideto ENYO (RIKEN)
Plenary Presentations: Chair: Atsushi Tamii
- Atsushi Tamii (Research Center for Nuclear Physics)
Plenary Presentations: Chair: Richard Milner (MIT)
- There are no conveners in this block
The longstanding discrepancy between the measured and the predicted values of the anomalous magnetic moment of the muon, $a_\mu$ = (g-2)/2, is one of the most intriguing potential hints of new physics in particle physics. After a brief introduction, the status of the theoretical prediction of g-2 will be presented, with some focus on the contributions yielding the dominant uncertainties. The...
At present, there is a discrepancy between the Standard Model calculation and the measured value of the anomalous magnetic moment of the muon $a_\mu$. This disagreement may arise from new physics, or from an omission in either theory or experiment. Ongoing international efforts on both fronts aim to resolve the source of this discrepancy. This talk will present the progress and prospects of...
The dipole polarizability of nuclei carries information on the density dependence of the symmetry energy governing the properties of the Equation of State of neutron-rich matter relevant to neutron stars and core-collapse supernovae. In recent years, zero-degree polarized proton scattering has been developed at RCNP as an experimental tool to measure the dipole polarizability [1]. Such data...
Extreme Light Infrastructure - Nuclear Physics (ELI-NP) is a new research infrastructure installed in Bucharest-Magurele (Romania) dedicated to Nuclear Photonics with extreme photon beams. At ELI-NP high-power laser and gamma beams with unprecedented characteristics will be provided to be used for nuclear physics, laser plasma physics, quantum electrodynamics, material science research and...
Electric Dipole Moments (EDMs) of elementary particles, including hadrons, are
considered as one of the most powerful tool to study CP-violation beyond the Standard Model.
Such CP-violating mechanisms are searched for to
explain the dominance of matter over anti-matter in our universe.
The talk will discuss EDM searches of charged hadrons in storage rings.
Due to an EDM, the spin...
Results on high energy spin physics obtained at various facilities with fixed-target experiments will be presented. This includes measurements at JLab, Compass at CERN and HERMES at DESY. The topics covered are essentially the parton helicity and transversity, Sivers effect, GPDs and HEMPs. The extracted polarized PDFs and TMDs will be shown.
itle: Spin polarization effects in Heavy Ion Collisions
Presenter: Zuo-tang Liang (Shandong University)
Abstract:
In non-central high energy heavy ion collisions, the colliding system possesses a huge orbital angular momentum along the normal direction of the reaction plane. Due to the spin orbit interaction in the relativistic quantum system, such a huge orbital angular momentum leads...
A polarized gaseous target, operated in combination with the high-energy, high-intensity LHC beams and a highly performing LHC particle detector, has the potential to open new physics frontiers and to deepen our understanding of the intricacies of the strong interaction in the non-perturbative regime of QCD. Specifically, the LHCspin project aims to develop, in the next few years, innovative...
We report on the result of the neutron EDM experiment which took data in 2015 and 2016 at PSIs ultracold neutron source. The neutron EDM is deemed to be one of the most sensitive probes of physics beyond the standard model. The experiment measured the precession frequency of spin polarized neutrons as a function of a strong electric field. The electric dipole moment of the neutrons leads to a...
This talk is devoted to versatile studies with spin-polarized radioactive nuclei, which make use of asymmetric emission of decay radiation. This feature is often combined with nuclear magnetic resonance, resulting in the beta-NMR technnique, which is up to 10 orders of magnitude more sensitive than conventional NMR. In my CERN-ISOLDE experiment we have just used it to determine magnetic dipole...
Spin current, a spin counterpart of electric current, refers to a flow of electrons’ and nuclear spin angular momentum in condensed matter. Spin current has been ignored in electromagnetism in matter for many years, since it disappears in a very short distance, typically at the sub-micrometer scale. However, recent developments in nanotechnology have enabled us to make minute structures. For...
Polar molecules, due to their intrinsic electric dipole moment and their controllable complexity, are a powerful platform for precision measurement searches for physics beyond the standard model (BSM) and for quantum simulation/computation. This has led to many experimental efforts to cool and control molecules at the quantum level. I will discuss our results on the laser cooling of molecules...
Protein crystallography is an established technique for determining the structure of many protein systems. X-ray protein crystallography is the dominant technique, as the incredibly high flux of modern light sources allows researchers to collect data very quickly using very small crystals. In comparison, neutron crystallography has many unique advantages (due the neutron’s sensitivity to...
I will present some aspects of the measurements of the polarization of the Cosmological Microwave Background (CMB). In particular, I will detail what we have deduced about the cosmological parameters of the LambdaCDM concordance model and its extensions through the observation of the CMB polarization with the Planck satellite. I will also discuss future projects that aim to increase the...
I will discuss recent progress in the theoretical investigation of the partonic structure of the nucleon in terms of generalized parton distributions and transverse momentum dependent parton distributions. In particular, I will highlight the information encoded in these functions on the spin and multidimensional partonic structure of the nucleon.
The Relativistic Heavy Ion Collider (RHIC) is the world’s only polarized proton+proton collider, capable of reaching center of mass energies up to 510 GeV. RHIC's experiments, PHENIX and STAR, have been carrying out a cold QCD program in order to gain deeper insight into the proton's spin structure and dynamics.
Data from longitudinally polarized $p+p$ collisions allow one...
In this talk we will provide an overview of the current theoretical status of observables that provide access to helicity PDFs and summarize the opportunities and challenges at the future EIC.
The fundamental symmetry violation can be studied by using nuclear reactions with polarized neutrons beam and target nuclei. The large enhancement of the parity violation was observed in the neutron capture reactions for some nuclei. It is predicted that time reversal symmetry violation is also enhanced with the same mechanism. Our recent results of 139La(n, γ) reaction suggested that the...
In recent years, significant progress has been made in improving our understanding of the QCD fragmentation process. I will review theoretical and experimental advances that can shed new light on both collinear and Transverse Momentum Dependent (TMD) fragmentation. Examples include new extractions of fragmentation functions, hadron-in-jet fragmentation, and multi-differential measurements. In...
Great progress in high energy polarized proton experiments was made in the USA. Historically these experiments were carried out mainly at ZGS, LAMPF, AGS, FNAL, first with polarized targets and then with polarized proton beams from 1970s. These efforts are followed now at RHIC. I will briefly review the progress of the spin physics with high energy polarized protons, especially in relation...
The acceleration and storage of high energy polarized proton beams has made tremendous progress over the last fifty years challenging along the way the technologies, precision and the understanding of the beam dynamics of accelerators. After a brief summary of the development and history of polarized proton beam acceleration and the key contributions made by Ernest Courant and Satoshi Ozaki I...
The Spin Physics Detector (SPD) is one of the two large setups at the
NICA collider under construction at JINR (Dubna). The ultimate goal of
the studies at SPD is measurement of different spin observables in
polarized proton-proton, deuteron-deuteron and proton-deuteron
collisions sensitive to the polarized gluonic structure of the nucleon
at the luminosity up to 10^32 cm^-2*s^-1 and...
Progress in the nuclear spin physics studied by nuclear reactions is briefly reviewed with particular emphasis on the contributions of Munetake Ichimura and his research-group.
Much of his recent work was based on a comprehensive framework consisting of a distorted wave impulse approximation (DWIA) with response function calculated by a continuum random phase approximation(RPA).
We pay...
Resent results obtained using state-of-the-art lattice QCD simulations on the nucleon spin decomposition will be reviewed. The results include valence and sea quark and gluon contributions. Open issues in particular connected to the fixing and renormalisation will be discussed.
The angular-momentum selectivity in photon-induced nuclear reactions enables strategic investigations of nuclear and nucleon structure via excitation of the internal electric charge and current distributions as expressed through single-particle and collective motion responses. The narrow energy resolution and high polarization of laser Compton gamma-ray ($\gamma$-ray) beams offer a...
A linearly polarized photon beam acts as a filter to disentangle the production mechanisms and suppress background processes in the photoproduction of mesons and baryons. Compton backscattering of laser light off the 8 GeV electrons circulating in the SPring-8 storage ring provides a high-intensity beam of linearly polarized photons in a range of $1.4$ - $2.9$ GeV. The LEPS facility featured...
Progress on Proton Charge Radius Measurements
Ashot Gasparian
NC A&T State University
for the PRad Collaboration
Abstract
The proton charge radius is one of the fundamental quantities in physics. For the past seventy years it has been measured through elastic electron-proton scattering and ordinary hydrogen spectroscopy methods. Over the years, results from both methods...
It is widely known that a solid polarized target is a powerful device for researches in spin physics, such as investigation of spin structure of nucleons, nuclear structure, and spin correlation in nuclear reactions. Although about 50 years have already passed since the beginning of studies on the Dynamic Nuclear polarization(DNP), the solid polarized targets are still limited to protons and...
The Electron-Ion Collider (EIC) will be the new, most sophisticated accelerator facility for studying properties of nuclear matter at high intensity and resolving power. Nearly two decades in the planning, the EIC is now the highest priority project for new construction in the US Nuclear Physics Long Range Plan of 2015. It is enthusiastically endorsed by the US National Academy of Sciences in...
The Electron-Ion Collider will be a new discovery machine for unlocking the secrets of the "glue" that binds the building blocks of visible matter in the universe. The EIC will consist of two intersecting accelerators, one producing an intense beam of electrons (Electron Storage Ring), the other a high-energy beam of protons or heavier atomic nuclei (Hadron Storage Ring), which are steered...