6–10 Nov 2023
RIKEN Wako campus
Asia/Tokyo timezone

Development of Beam Target Cooling System Using Two-Phase Flow Natural Circulation

7 Nov 2023, 16:45
15m
Administrative Headquarters 2F conference room (RIKEN Wako campus)

Administrative Headquarters 2F conference room

RIKEN Wako campus

2-1 Hirosawa, Wako, Saitama, Japan
Contributed Oral Topic1-1

Speaker

Naoya Kamei (J-PARC/KEK)

Description

In recent years, beam power in particle accelerator facilities has been increasing to explore new physics. Accompanying this trend, the heat generation density of beam target is also increasing. Traditionally, pumped water cooling system have been used to cool high heat generation density beam targets. However, these systems require multiplexed pumps and equipment with high safety features.
In this study, we are developing a new type of beam target cooling system using two-phase water flow natural circulation without using pumps and electric power.
The cooling system consists of a loop pipe consisting of two vertical pipes and two horizontal pipes, a target at the bottom of one vertical pipe, and a condenser (heat exchanger) at the top of the other vertical pipe. The water boils to cool the beam target due to the high heat generation density in the target, and water and vapor (two-phase flow) flows upward in the vertical pipe. The two-phase flow reaches the condenser in the other vertical pipe, where the vapor is condensed by heat exchange in the condenser. Thus, single-phase water flows down the vertical pipe. There is the density difference between the two-phase flow (water and vapor) in one vertical pipe and the single-phase water flow in the other vertical pipe. This density difference makes the driving force of the natural circulating water flow. Since this cooling system operates without electricity, it is expected to be a highly reliable cooling system even in emergencies such as power outages. It can also cool the decay heat of the target in such a situation.
In this presentation, we report the detailed conceptual design of this cooling system, and the result of experiment with cartridge heater which emulate the beam target, and result of a natural circulation test of a water/air system that supplies air to the test section with a compressor to simulate the steam generated by the beam target.

Themes for the contribution 1 R&D to support concepts

Primary authors

Presentation materials