Conveners
Topic4-2
- Hiroki Okuno (RIKEN Nishina center for accelerator-based science)
The Mu2e experiment at Fermilab plans to use a a radiation cooled production target to generate pions from an incoming 8kW proton beam. Radiative cooling results in a high surface temperature, requiring a high-Z, refractory metals target material due to its high melting point, high tensile strength and low thermal expansion coefficient. Tungsten is the material of choice for this application. ...
At the J-PARC Hadron facility, construction of the COMET project is underway to explore the muon-electron conversion process. An 8 GeV proton beam supplied from the main ring is irradiated to a target in a superconducting capture solenoid magnet, and the generated pions and muons are transported to the experimental area. Graphite material will be used as the target material in Phase 1 (proton...
At the Muon Science Facility (MUSE) located within the Japan Proton Accelerator Research Complex, there are four beamlines situated around the muon target. The D-line incorporates a superconducting solenoid, while the U-line utilizes an axial-focusing system capable of transporting muons over large solid angles to generate ultra-slow muons. The S-line is dedicated to µSR research, and the...
At J-PARC Hadron Experimental Facility, a wide variety of nuclear and particle physics experiments has been carried out using secondary particles such as kaon and pion, which are produced in a dense-metal target irradiated by slowly extracted 30-GeV proton beam. A current target is a fixed type made of gold, which is jointed to the water-cooled copper block. The current target is designed to...
Commissioning of the Los Alamos Neutron Science Center (LANSCE) Mark IV Target-Moderator-Reflector System (TMRS) neutron source at the Lujan Center took place during the 2022 run cycle. The Mark IV is comprised of three target stations. A new upper target has been designed to accommodate and enhance the changing experimental needs. While the middle and lower target stations had minimal to no...
Oak Ridge National Laboratory’s (ORNL) Second Target Station (STS) is designed to become the world’s highest peak-brightness spallation source of cold neutrons. Exceptionally bright cold neutron beams will provide transformative capabilities to examine novel materials for advanced technologies in the decades to come. Bright beams will enable new neutron scattering experiments using innovative...