Conveners
Topic7-2
- Helmut Weick (GSI Helmholtz Center for Heavy Ion Research GmbH)
High intensity neutrino beams have been generated using a proton beam power of up to 540 kW at the J-PARC neutrino facility for the long-baseline neutrino experiment since 2009. A 30 GeV proton beam of about 10^14 protons per pulse is injected using fast extraction to the graphite target. The pions generated are focused by the electric magnetic horns, and neutrinos decayed from the pions are...
The Spallation Neutron Source (SNS) at the Oak Ridge National Laboratory is currently the world's highest power pulsed neutron spallation source. The SNS first reached its design power of 1.4 MW in 2013 and began operating steadily at 1.4 MW in 2018. Part of the delay in reaching steady, reliable 1.4 MW operation was due to the capabilities of the target systems. We are...
The Ring Injection Dump (RID) is a high energy beam transport (HEBT) region in the SNS accelerator where extra beam is aborted into a 150 kW water cooled beam stop. The location of the two beams on the adjacent vacuum window is currently not well understood. A new quadrupole magnet is being added to the RID beamline as part of the Proton Power Upgrade (PPU) project, so an imaging system was...
Measurement of the strain waveforms is critical to improving SNS target performance and reliable lifetime, as well as to evaluating the efficacy of strain mitigation techniques such as the injection of helium gas into the mercury flow. As the measurements must take place in a very limited space and in the presence of intense electro-magnetic interference and ionizing radiation, fiber-optic...
A liquid mercury target system for the pulsed spallation neutron source is installed in the J-PARC. High-power proton beams of 3 GeV 25 Hz is injected to the liquid mercury to produce neutrons. A mercury target vessel made of 316L stainless steel is severely damaged by cavitation which is caused by the proton beam-induced pressure waves. The thickness of beam window is designed to 3 mm to...